Nullity and Bounds to the Nullity of Dendrimer Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nullity of graphs

The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. It is known that η(G) ≤ n − 2 if G is a simple graph on n vertices and G is not isomorphic to nK1. In this paper, we characterize the extremal graphs attaining the upper bound n− 2 and the second upper bound n− 3. The maximum nullity of simple graphs with n vertices and e edges, M(n, e), is al...

متن کامل

Ela on the Nullity of Graphs

The nullity of a graph G, denoted by η(G), is the multiplicity of the eigenvalue zero in its spectrum. It is known that η(G) ≤ n − 2 if G is a simple graph on n vertices and G is not isomorphic to nK1. In this paper, we characterize the extremal graphs attaining the upper bound n− 2 and the second upper bound n− 3. The maximum nullity of simple graphs with n vertices and e edges, M(n, e), is al...

متن کامل

The Rank+Nullity Theorem

The rank+nullity theorem states that, if T is a linear transformation from a finite-dimensional vector space V to a finite-dimensional vector space W , then dim(V ) = rank(T ) + nullity(T ), where rank(T ) = dim(im(T )) and nullity(T ) = dim(ker(T )). The proof treated here is standard; see, for example, [14]: take a basis A of ker(T ) and extend it to a basis B of V , and then show that dim(im...

متن کامل

On the nullity of line graphs of trees

The spectrum of a graph G is the set of eigenvalues of the 0–1 adjacency matrix of G. The nullity of a graph is the number of zeros in its spectrum. It is shown that the nullity of the line graph of a tree is at most one. c © 2001 Elsevier Science B.V. All rights reserved.

متن کامل

Minimum Rank, Maximum Nullity, and Zero Forcing of Graphs

Combinatorial matrix theory, which involves connections between linear algebra, graph theory, and combinatorics, is a vital area and dynamic area of research, with applications to fields such as biology, chemistry, economics, and computer engineering. One area generating considerable interest recently is the study of the minimum rank of matrices associated with graphs. Let F be any field. For a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AL-Rafidain Journal of Computer Sciences and Mathematics

سال: 2013

ISSN: 2311-7990

DOI: 10.33899/csmj.2013.163548